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Abstract. Blockchain-enabled smart contracts that employ proof-of-
stake validation for transactions, promise significant performance ad-
vantages compared to proof-of-work solutions. For broad industry adop-
tion, other important requirements must be met in addition. For exam-
ple, stable backwards-compatible smart-contract systems must automate
cross-organizational information-logistics orchestration with lite mobile
wallets that support simple payment verification (SPV) techniques. The
currently leading smart-contract solution Ethereum, uses computation-
ally expensive proof-of-work validation, is expected to hard-fork multiple
times in the future and requires downloading the entire blockchain. Con-
sequently, Ethereum smart contracts have limited utility and lack formal
semantics, which is a security issue. This whitepaper fills the gap in the
state of the art by presenting the Qtum smart-contract framework that
aims for sociotechnical application suitability, the adoption of formal-
semantics language expressiveness, and the provision of smart-contract
template libraries for rapid best-practice industry deployment. We dis-
cuss the Qtum utility advantages compared to the Ethereum alternative
and present Qtum smart-contract future development plans for industry-
cases applications.
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1 Introduction

Orchestration and choreography protocols that facilitate, verify and enact with
computing means a negotiated agreement between consenting parties, are termed
smart contracts. The latter initially find application in diverse domains such as,
e.g., financial-technology [6], Internet-of-Things (IoT) applications [33], digital-
signing solutions [11]. An essential aspect of smart contracts is a decentralized
validation of transactions, initially by means of so-called proof-of-work (PoW)
[42]. The core technology that enables smart contracts is a public distributed
ledger termed the blockchain, which records transaction events without requir-
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ing a trusted central authority. Blockchain technology spreads in popularity with
the inception of Bitcoin [23], a peer-to-peer (P2P) cryptocurrency and payment
system that comprises a limited set of operations on the protocol layer. Bit-
coins use PoW for transaction validation that is computationally expensive and
electricity intensive.

In contrast to Bitcoins, many smart-contract systems are equipped with the
Turing-complete language Solidity1 that resembles JavaScript syntax and targets
for enactment, e.g., the Ethereum Virtual [44] machine. Ethereum is the de-
facto leading smart-contract system despite being plagued by several deficiencies.
First, proof-of-work transaction validation diminishes scalability to the point
where Ethereum is considered to not be feasible for most industry applications.
Second, in a recent crowdfunding casestudy, the Ethereum affiliated Solidity
smart contract was hacked2 because of security flaws resulting from a lack in
the state of the art with respect to tools for formal verifications [3]. The security
flaw resulted in a loss of ca. $50 million. Consequently, Ethereum performed a
hardfork resulting in a schism yielding two separate Ethereum versions3. Yet
another Ethereum hardfork4 was caused by a denial of service attack, and more
hardforks must be expected5 for realizing proof-of-stake [2] transaction validation
and blockchain sharding [20].

More reasons limit widespread Ethereum industry adoption [8]. For exam-
ple, an inability to automate cross-organizational information-logistics, lacking
privacy protecting differentiations between external- versus related internal pri-
vate contracts, secure and stable virtual machines for blockchains with better
performing proof-of-stake [2] transaction validation, formally verifiable smart-
contract languages, lite wallets that do not require downloading the entire
blockchain, and mobile-device solutions for smart contracts with simple pay-
ment verification (SPV) [14]. The latter means that clients merely download
block headers when they connect to an arbitrary full node [23].

While Qtum uses the Ethereum Virtual Machine (EVM) for a current lack
of more suitable alternatives, according to [19], the EVM has deficiencies such
as earlier experienced attacks against mishandled exceptions and against de-
pendencies such as for transaction-ordering, timestamps, and so on. It is also
desirable for a smart-contract system to achieve industry-scalability with em-
ploying sidechains [10] and unspent transaction outputs (UTXO) [10], achieving
compatibility to other blockchain systems such as Bitcoins [23], or Colored coins
[36]. Furthermore, an adoption of features from the Bitcoin Lightning Network
[35] yields scalability via bidirectional micropayment channels.

1 http://solidity.readthedocs.io/en/develop/
2 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
3 https://bitcoinsmagazine.com/articles/ethereum-classic-hard-forks-diffuses-

difficulty-bomb-1484350622/
4 https://cointelegraph.com/news/ethereum-hard-fork-no-4-has-arrived-as-dos-

attacks-intensify
5 https://forum.daohub.org/t/whats-up-with-casper-proof-of-stake-and-

sharding/6309
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While smart-contract systems such as Ethereum attract attention, a widespread
industry adoption does not exist for the above discussed reasons. This whitepa-
per addresses the gap by specifying the Qtum6 framework for smart-contract
systems that answers the question of how to develop a smart-contract solu-
tion to satisfy critical customer requirements for enabling cross-organizational
information logistics to reduce costs and time? To establish a separation of con-
cerns, we pose the following sub-questions. What differentiating technological
performance advantages do Qtum smart-contract solutions provide? What are
critical smart-contract requirements the Qtum framework satisfies? What are
the unique features of cross-organizational information logistics automation the
Qtum framework aims to support?

The remainder of this whitepaper is structured as follows. First, Section 2
focuses on concrete advantages of the Qtum framework for achieving techno-
logically performance increases in comparison to related solutions. Section 3
gives functional- and quality goals in combination with involved stakeholders for
sociotechnically organized smart-contract systems. Section 4 shows how the run-
ning case is supported by the Qtum-framework value-transfer protocol. Finally,
Section 5 concludes this whitepaper together with discussing limitations, open
issues and future development work.

2 Qtum Performance Advantage

One of the primary goals of Qtum is to build the first UTXO-based smart-
contract system with a proof-of-stake (PoS) [37] consensus model. The latter
means the creator of the next block is chosen based on the held wealth in crypto-
currency. Thus, blocks are usually forged, or minted instead of being mined, there
are block rewards in addition to transaction fees and forgers receive a percentage
of ”interest” for the amount of funds they stake.

Qtum is compatible with the Bitcoin- and Ethereum ecosystems and aims at
producing a variation of Bitcoin with Ethereum Virtual Machine (EVM) com-
patibility. Note that differently to Ethereum, the Qtum EVM is constantly back-
wards compatible. Pursuing a pragmatic design approach, Qtum employs indus-
try use cases with a strategy comprising mobile devices. The latter allows Qtum
promoting blockchain technology to a wide array of Internet users and thereby,
decentralizing PoS transaction validation.

The remainder is structured as follows. Section 2.1 compares the advantages
of Bitcoin UTXO versus the Ethereum account model. Next, Section 2.2 dis-
cusses the consensus platform for the Qtum blockchain. Section 2.3 shows the
integration of Qtum contracts into the EVM. Finally, Section 2.4 describes the
payment model for Qtum operations.

6 https://qtum.org/



4 Alex Norta

2.1 UTXO Versus Account Model

In the UTXO model, transactions use as input unspent Bitcoins that are de-
stroyed and as transaction outputs, new UTXOs are created. Unspent transac-
tion outputs are created as change and returned to the spender [1]. In this way,
a certain volume of Bitcoins are transferred among different private key owners,
and new UTXOs are spent and created in the transaction chain. The UTXO of a
Bitcoin transaction is unlocked by the private key that is used to sign a modified
version of a transaction. In the Bitcoin network, miners generate Bitcoins with a
process called a coinbase transaction, which does not contain any inputs. Bitcoin
uses a scripting language for transactions with a limited set of operations7. In
the Bitcoin network, the scripting system processes data by stacks (Main Stack
and Alt Stack), which is an abstract data type following the LIFO principle of
Last-In, First-Out.

In the Bitcoin client, the developers use isStandard() function [1] to sum-
marize the scripting types. Bitcoin clients support: P2PKH (Pay to Public Key
Hash), P2PK (Pay to Public Key), MultiSignature (less than 15 private key sig-
natures), P2SH (Pay to Script Hash), and OP_RETURN. With these five standard
scripting types, Bitcoin clients can process complex payment logics. Besides that,
a non-standard script can be created and executed if miners agree to encapsulate
such a non-standard transaction.

For example, using P2PKH for the process of script creation and execution,
we assume paying 0.01BTC for bread in a bakery with the imaginary Bitcoin
address ”Bread Address”. The output of this transaction is:
OP_DUP OP_HASH160 <Bread Public Key Hash> OP_EQUAL OP_CHECKSIG

The operation OP_DUP duplicates the top item in the stack. OP_HASH160 returns
a Bitcoin address as top item. To establishes ownership of a bitcoin, a Bitcoin ad-
dress is required in addition with a digital key and a digital signature. OP_EQUAL
yields TRUE (1) if the top two items are exactly equal and otherwise FALSE (0).
Finally, OP_CHECKSIG produces a public key and signature together with a val-
idation for the signature pertaining to hashed data of a transaction, returning
TRUE if a match occurs.

The unlock script according to the lock script is:
<Bread Signature> <Bread Public Key>

The combined script with the above two:
<Bread Signature> <Bread Public Key> OP_DUP OP_HASH160

<Bread Public Key Hash> OP_EQUAL OP_CHECKSIG

Only when the unlock script and the lock script have a matching predefined
condition, is the execution of the script combination true. It means, the Bread
Signature must be signed by matching the private key of a valid Bread Address
signature and then the result is true.

Unfortunately, the scripting language of Bitcoin is not Turing-complete, e.g.,
there is no loop function. The Bitcoin scripting language is not a commonly used
programming language. The limitations mitigate the security risks by preventing

7 https://en.bitcoin.it/wiki/Script
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the occurrence of complex payment conditions, e.g., generating infinite loops, or
other complicated logic loopholes.

In the UTXO model, it is possible to transparently trace back the history of
each transaction through the public ledger. The UTXO model has parallel pro-
cessing capability to initialize transactions among multiple addresses indicating
the extensibility. Additionally, the UTXO model supports privacy in that users
can use Change Address as the output of a UTXO. The target of Qtum is to
implement smart contracts based on the innovative design of the UTXO model.

Versus the UTXO model, Ethereum is an account based system8. More pre-
cisely, each account experiences direct value- and information transfers with state
transitions. An Ethereum account address of 20 bytes comprises a nounce as a
counter for assuring one-time processing for a transaction, the balance of the
main internal crypto fuel for paying transaction fees called Ether, an optional
contract code and default-empty account storage.

The two types of Ether accounts are on the one hand, private-key controlled
external and on the other hand, contract-code controlled. The former code-void
account type creates and signs transactions for message transfer. The latter
activates code after receiving a message for reading and writing internal storage,
creating contracts, or sending other messages.

In Ethereum, balance management resembles a bank account in the real
world. Every newly generated block potentially influences the global status of
other accounts. Every account has its own balance, storage and code-space base
for calling other accounts or addresses, and stores respective execution results.
In the existing Ethereum account system, users perform P2P transactions via
client remote procedure calls. Although sending messages to more accounts via
smart contracts is possible, these internal transactions are only visible in the
balance of each account and tracking them on the public ledger of Ethereum is
a challenge.

Based on the discussion above, we consider the Ethereum account model
to be a scalability bottleneck and see clear advantages of the Bitcoin-network
UTXO model. Since the latter enhances the network effect we wish to
offer, an essential design decision for the pending Qtum release is the
adoption of the UTXO model.

2.2 Consensus Management

There are ongoing discussions about consensus and which platform meets the
needs of respective project requirements. The consensus topics most widely dis-
cussed are: PoW [41], PoS [2], Dynamic PoS9, and Byzantine Fault Tolerance [7]
as discussed by HyperLedger. The nature of consensus is about achieving data
consistency with distributed algorithms. Available options are, e.g., the Fischer
Lynch and Paterson theorem [5] that states consensus cannot be reached without
100% agreement amongst nodes.

8 https://github.com/ethereum/wiki/wiki/White-Paper
9 http://tinyurl.com/zxgayfr
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In the Bitcoin network, miners participate in the verification process by hash
collision through PoW. When the hash value of a miner is able to calculate and
meet a certain condition, the miner may claim to the network that a new block
is mined:

Hash(BlockHeader) ≤ M

D

For the amount of miners M and the mining difficulty D, the Hash() represents
the SHA256 power with value range [0, M], and D. The SHA256 algorithm used
by Bitcoin enables every node to verify each block quickly, if the number of
miners is high versus the mining difficulty.

The 80 byte BlockHeader varies with each different Nonce. The overall dif-
ficulty level of mining adjusts dynamically according to the total hash power
of the blockchain network. When two or more miners solve a block at the same
time, a small fork happens in the network. This is the point where the blockchain
needs to make a decision as to which block it should accept, or reject. In the
Bitcoin network, the chain is legitimate that has the most proven work attached.

Most PoS blockchains can source their heritage back to PeerCoin10 that is
based on an earlier version of Bitcoin Core. There are different PoW algorithms
such as Scrypt11, X1112, Groestl13, Equihash [4], etc. The purpose of launching
a new algorithm is to prevent the accumulation of computing power by one
entity and ensure that Application Specific Integrated Circuits (ASIC) can not
be introduced into the economy. Qtum Core chooses PoS based on the latest
Bitcoin source code for basic consensus formation.

In a traditional PoS transaction, the generation of a new block must meet
the following condition:

ProofHash < coins× age× target

In ProofHash, the stake modifier [40] computes together with unspent out-
puts and the current time. With this method, one malicious attacker can start
a double-spending attack by accumulating large amounts of coin age. Another
problem caused by coin age is that nodes are online intermittently after reward-
ing instead of being continuously online. Therefore, in the improved version of
PoS agreement, coin age removal encourages more nodes to be online simulta-
neously.

The original PoS implementation suffers from several security issues due to
possible coin age attacks, and other types of attacks [16]. Qtum agrees with the
security analysis of the Blackcoin team [40] and adopts PoS 3.0 14 into the latest
Qtum Core. PoS 3.0 theoretically rewards investors that stake their coins longer,
while giving no incentive to coin holders who leave their wallets offline.

10 https://peercoin.net/
11 https://litecoin.info/Scrypt
12 http://cryptorials.io/glossary/x11/
13 http://www.groestlcoin.org/about-groestlcoin/
14 http://blackcoin.co/
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2.3 Qtum Contract and EVM Integration

The EVM is stack-based with a 256-bit machine word. Smart contracts that run
on Ethereum use this virtual machine for their execution. The EVM is designed
for the blockchain of Ethereum and thus, assumes that all value transfer use
an account-based method. Qtum is based on the blockchain design of Bitcoin
and uses the UTXO-based model. Thus, Qtum has an account abstraction layer
that translates the UTXO-based model to an account-based interface for the
EVM. Note that an abstraction layer in computing is instrumental for hiding
the implementation details of particular functionality to establish a separation
of concerns for facilitating interoperability and platform independence.

EVM Integration: All transactions in Qtum use the Bitcoin Scripting Lan-
guage, just like Bitcoin. In Qtum however, there exist three new opcodes.

– OP_EXEC: This opcode triggers special processing of a transaction (explained
below) and executes specific input EVM bytecode.

– OP_EXEC_ASSIGN: This opcode also triggers special processing such as OP_EXEC.
This opcode has as input a contract address and data for the contract. Next
follows the execution of contract bytecode while passing in the given data
(given as CALLERDATA in EVM). This opcode optionally transfers money to a
smart contract.

– OP_TXHASH: This opcode is used to reconcile an odd part of the accounting
abstraction layer and pushes the transaction ID hash of a currently executed
transaction.

Traditionally, scripts are only executed when attempting to spend an output.
For example, while the script is on the blockchain, with a standard public key
hash transaction, no validation or execution takes place. Execution and valida-
tion does not happen until a transaction input references the output. At this
point, the transaction is only valid if the input script (ScriptSig) does provide
valid data to the output script that causes the latter to return non-zero.

Qtum however, must accommodate smart contracts that execute immediately
when merged into the blockchain. As depicted in Figure 1 , Qtum achieves this by
the special processing of transaction output scripts (ScriptPubKey) that contain
either OP_EXEC, or OP_EXEC_ASSIGN. When one of these opcodes is detected in a
script, it is executed by all nodes of the network after the transaction is placed
into a block. In this mode, the actual Bitcoin Script Language serves less as a
scripting language and instead carries data to the EVM. The latter changes state
within its own state database, upon execution by either of the opcodes, similar
to a Ethereum contract.

For easy use of Qtum smart contracts, we have to authenticate the data
sent to a smart contract as well as its creator stemming from a particular pub-

keyhash address. In order to prevent the UTXO set of the Qtum blockchain
from becoming too large, OP_EXEC and OP_EXEC_ASSIGN transaction outputs are
also spendable. OP_EXEC_ASSIGN outputs are spent by contracts when their code
sends money to another contract, or to a pubkeyhash address. OP_EXEC outputs
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Fig. 1. Qtum transaction processing.

are spent whenever the contract uses the suicide operation to remove itself
from the blockchain.

Qtum Account Abstraction Layer The EVM is designed to function on an
account-based blockchain. Qtum however, being based on bitcoin, uses a UTXO-
based blockchain and contains an Account Abstraction Layer (AAL) that allows
the EVM to function on the Qtum blockchain without significant modifications
to the virtual machine and existing Ethereum contracts.

The EVM account model is simple to use for smart-contract programmers.
Operations exist that check the balance of the current contract and other con-
tracts on the blockchain, and there are operations for sending money (attached
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to data) to other contracts. Although these actions seem fairly basic and mini-
malistic, they are not trivial to apply within the UTXO-based Qtum blockchain.
Thus, the AAL implementation of these operations may be more complex than
expected.

A Qtum-blockchain deployed smart contract is assigned and callable by its
address and comprises a newly deployed contract balance set to zero. There is
currently no protocol in Qtum that allows a contract to be deployed with a
non-zero balance. In order to send funds to a contract, a transaction uses the
OP_EXEC_ASSIGN opcode.

The example output script below sends money to a contract:

1 ; the v e r s i o n o f the VM
10000 ; gas l imit f o r the transaction
100 ; gas p r i c e in Qtum s a t o s h i s
0xF012 ; data to send the cont rac t
( u s u a l l y using the S o l i d i t y ABI)
0 x1452b22265803b201ac1f8bb25840cb70afe3303 ;
ripemd−160 hash o f cont rac t tx id
OP EXEC ASSIGN

The simple script above hands over transaction processing to the OP_EXEC_

ASSIGN opcode. Assuming no out-of-gas, or other exceptions occur, the value
amount given to the contract is OutputValue. The exact details of the gas

mechanism we discuss below. By adding this output to the blockchain, the output
enters the domain of the contract owned UTXO set. This output value is reflected
in the balance of the contract as the sum of spendable outputs.

Fig. 2. Assign Funds and/or a message contract TX.

Although Figure 2 shows sending funds to a contract from a standard public
key hash output, the method for sending money from one contract to another
is nearly identical. When the contract sends funds to another contract or public
key hash address, the former spends one of its owned outputs. The sending
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contract involves Expected Contract Transactions for the fund sending. These
transactions are special in that they must exist in a block to be valid for the
Qtum network. Expected Contract Transactions are generated by miners while
verifying and executing transactions, rather than being generated by consumers.
As such, they are not broadcast on the P2P network.

Fig. 3. Qtum block validation showing the Expected Contract Transaction List.

The primary mechanism to perform Expected Contract Transactions is the
new opcode, OP_TXHASH that is part of Figure 3. Internally, both OP_EXEC and
OP_EXEC_ASSIGN have two different modes. Upon their execution as part of the
output script processing, the EVM is executed. When the opcodes are executed
as part of input script processing, however, the EVM is not executed to avoid
double execution. Instead, the OP_EXEC and OP_EXEC_ASSIGN opcodes behave
similar to no-ops and return either 1 or 0, i.e., spendable or not spendable
respectively, based on a given transaction hash. This is why OP_TXHASH is so
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important to the functioning of this concept. Briefly, OP_TXHASH is a new op-
code added which pushes the current spending transaction’s SHA256 hash onto
the Bitcoin Script stack. The OP_EXEC and OP_EXEC_ASSIGN opcodes check the
Expected Contract Transaction List during a spend attempt.

After the transaction passes (usually from OP_TXHASH) to the opcodes that
exist in the Expected Contract Transaction List, the result is 1, or spend-
able. Otherwise, the return is 0, or not spendable. In this way, OP_EXEC and
OP_EXEC_ASSIGN using vouts are only spendable when a contract and thus, the
Account Abstraction Layer, requires that the vout is spendable, i.e., while the
contract attempts sending money. This results in a secure and sound way of
allowing contract funds to be spent only by a respective contract in alignment
with a normal UTXO transaction.

A specific scenario occurs if a contract has more than one output that can
be spent. Each node may pick different outputs and thus, use completely dif-
ferent transactions for spending OP_EXEC_ASSIGN transactions. This is resolved
in Qtum by a consensus-critical coin picking algorithm. The latter is similar to
the standard coin picking algorithm used within a user wallet. However, Qtum
significantly simplifies the algorithm to avoid the risk of denial of service (DoS)
attack vectors and to realize simple consensus rules. With this consensus-critical
coin picking algorithm, there is now no possibility for other nodes to pick differ-
ent coins to be spent by a contract. Any miner/node who picks different outputs
must fork away from the main Qtum network, and their blocks are rendered
invalid.

When an EVM contract in Figure 4 sends money either to a pubkeyhash

address, or to another contract, this event constructs a new transaction. The
consensus-critical coin-picking algorithm chooses the best owned outputs of
the contract pool. These outputs are spent as inputs with the input script
(ScriptSig) comprising a single OP_TXHASH opcode. The outputs are thus, the
destination for the funds, and a change output (if required) to send the remain-
ing funds of the transaction back to the contract. This transaction hash is added
to the Expected Contract Transaction List and then the transaction itself is
added to the block immediately after the contract execution transaction. Once
this constructed transaction is validated and executed, a confirmation check of
the Expected Contract Transaction List follows. Next, this transaction hash is
removed from the Expected Contract Transaction List. Using this model, it is
impossible to spoof transactions for spending them by providing a hardcoded
hash as input script, instead of using OP_TXHASH.

The above described abstraction layer renders the EVM contracts oblivious
to coin picking and specific outputs. Instead, the EVM contracts know only that
they and other contracts have a balance so that money can be sent to these
contracts as well as outside of the contract system to pubkeyhash addresses.
Consequently, contract compatibility between Qtum and Ethereum is strong
and very few modifications are required to port an Ethereum contract to the
Qtum blockchain.
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Fig. 4. Spend contract OP_EXEC_ASSIGN transaction.

Added Standard Transaction Types: The following are the standard trans-
action types that we add to Qtum. They are documented here as Bitcoin script
templates: Deploying a new contract to the blockchain requires an output script
as follows:

1 ; the v e r s i o n o f the VM
[ Gas l imit ]
[ Gas p r i c e ]
[ Contract EVM bytecode ]
OP EXEC

Sending funds to an already deployed contract on the blockchain requires the
script below:

1 ; the v e r s i o n o f the VM
[ Gas l imit ]
[ Gas p r i c e ]
[ Data to send to the cont rac t ]
[ r ip−emd160 hash o f cont rac t transaction id ]
OP EXEC ASSIGN

Note there are no standard transaction types for spending as that requires
the Expected Contract Transaction List. Thus, these spending transactions are
neither broadcast nor valid on the P2P network.

2.4 Gas Model

A problem Qtum faces with adding Turing-completeness to the Bitcoin blockchain
is relying on only the size of a transaction, which is not reasonable for deter-
mining the fee paid to miners. The reason is that a transaction may infinitely
loop and halt the entire blockchain for transaction-processing miners. As Figure
5 shows, the Qtum project adopts the concept of gas from Ethereum. In the
gas concept, each EVM opcode executed has a price and each transaction has
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an amount of gas to spend. Post-transaction remaining gas is refunded to the
sender.

Fig. 5. Gas refund model.

When the gas required for contract execution exceeds the amount of gas

available to a transaction, then the actions of a transaction and state changes are
reverted. Thus, any modified permanent storage is reverted to its original state
including any spending of contract funds so that the latter are not spent. Despite
a reversion, all gas of a transaction is consumed and given to the processing
miner since the computing resources have already been spent.

Although Qtum uses the gas model from Ethereum, we expect the gas sched-
ule, i.e., the gas price of each EVM opcode, to significantly differ from Ethereum.
The exact values are determined by comparing existing prices in Ethereum with
the amount of processing and blockchain resources required for each opcode to
Qtum.

When creating a contract funding-, or deployment transaction, the user spec-
ifies two specific items for gas. The GasLimit determines the amount of consum-
able gas by a contract execution. The second item is the GasPrice to set the ex-
act price of each unit of gas in Qtum Satoshis. The latter are currently a smaller
unit of the Bitcoin currency that the blockchain records. The maximum Qtum
expenditure of a contract execution equates the multiplication of GasLimit by
GasPrice. If this maximum expenditure exceeds the transaction fee provided by
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the transaction then the latter is invalid and can not be mined, or processed.
The remaining transaction fee after subtracting this maximum expenditure is
the Transaction Size Fee and analogous to the standard Bitcoin fee model.

To determine the appropriate priority of a transaction, miners consider two
variables. First, the transaction size fee must match the total size of a transaction,
i.e., usually determined by a minimum amount of coins per kilobyte formula.
The second variable is the GasPrice of a contract execution. In combination,
PoS miners choose the most important and profitable transactions to process
and include in a block. Consequently, there exists a free-market fee model with
miners and users optimizing for the best fee that suits their transaction speed
and the price they are willing to pay.

Refunds: Using the UTXO model, funds sent to miners as transaction fees
are non-negotiable. It is impossible for a miner to partially refund a fee if the
transaction is easier for the miner to process than expected. Still, for the gas-
model to be useful, a method must exist to refund funds back to the sender.
Moreover, it must be possible to roll back the state of a transaction that runs
out of gas and return gas-fees to miners.

Refunding gas-fees in Qtum is enabled by creating new outputs as part of
the coinbase transaction of a miner. We add a new block validation consensus
rule to ensure refunding outputs are required to exist in the coinbase transaction.
Otherwise, miners may choose to not refund gas. The refund is given back to the
sender of a transaction fund by copying the output script. For security reasons,
this script is currently a standard pay-to-pubkeyhash, or pay-to-scripthash

script. We plan to lift the restriction after further security studies.
For reference, the OP_EXEC_ASSIGN has the following format to assign con-

tract funds:
Inputs: (in push order)

– Transaction hash for spending [optional]
– version number (VM version to use, currently just 1)
– gas limit (maximum amount of gas that can be used by this exec)
– gas price (How much qtum each gas unit is)
– data (data to be passed to this smart contract)
– smart contract address

Outputs: (in pop order)

– Spendable (if the funds are currently spendable)

Consequently, we give an example EXEC_ASSIGN below:
1
10000
100
0xABCD1234...
3d655b14393b55a4dec8ba043bb286afa96af485
EXEC_ASSIGN
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If the VM execution results in an out-of-gas exception, this vout is spent by
the next transaction in the block using the redeem script OP_TXHASH.

The generated vout for this transaction is a pubkeyhash script taken from
the vin[0].prevout script. In this early version of Qtum, only pubkeyhash

senders are allowed for VM funding transactions. Although other forms can be
accepted into blocks to result in VM execution, the msg.sender in the EVM is
”0” and any out-of-gas, or gas-refund needed results in the contract keeping
the funds.

Partial Refund Model: Pertaining to the gas model, it is also necessary to
refund the unspent portion for several reasons. On the one hand, users can spend
a large amount of funds to ensure their contract is executed properly. Still, the
unused gas returns as a Qtum refund.

The return address for gas is expressed on the blockchain as a vin[0].prevout
script of the sending transaction. Gas is sent to a contract by using the standard
bitcoin transaction-fee mechanism. Thus, the new fee model slightly augments
this to make the transaction fee:

g a s f e e = g a s l i m i t ∗ g a s p r i c e
t x f e e = vin − vout
t x r e l a y f e e =t x f e e − g a s f e e
re fund = g a s f e e − used gas

A proposal exists for enabling miners to evaluate both the tx_relay_fee and
the gas_price under a single ”credit price” value for determining transaction
priority.

During contract execution, gas tokens are subtracted from the total fee, i.e.,
multiplying by gas_price. After completing the contract execution, the remain-
der of this gas_fee must be returned to the given gas return script by adding an
output to the coinbase transaction the miners use to retrieve their block reward.
The coinbase added vout is a pubkeyhash from vin[0].prevout. In order to
receive a gas refund, this must be a spent pubkeyhash vout. Otherwise, the gas
refund remains with the miner in an out-of-gas condition and the funds sent
will remain with the contract.

Note that it is currently only possible to have one EVM contract execution
per transaction. Thus, never does the case arise where two contract executions
attempt to share the transaction fee. This scenario may be enabled after solving
existing problems with multiple EVM executions per transaction. The current
design support multiple contract executions per transaction.

Important GAS Edge Cases: Miners must be cautious with contract-gas,
and fund-return scripts. If the latter script output causes a block to exceed
the maximum size then the contract transaction can not be put into this block.
Instead, the gas-return script execution must take place again in the next mined
block. Miners must ensure sufficient capacity exists in the candidate block for
the gas-return script before attempting to execute the contract. Not following
this rule results in a contract requiring repeated execution, if the refund script
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does not fit into the current block. If there are no gas funds to return, no vout

requirement exists for returning the funds.
It is consensus critical that the transaction fee includes the gas_fee. A trans-

action is invalid when adding it to a block results in a negative gas refund, or
when the gas_fee is lower than the transaction fee.

No transaction output script is valid that has more than one OP_EXEC, or
OP_EXEC_ASSIGN opcode. While this limits scripting abilities, it is preferable
to potential recursion- and multiple-execution problems. Consequently, static
analysis suffices to determine if a script is invalid.

After very blockchain-oriented Qtum technicalities, we next describe concep-
tually the management of smart-contract lifecycles. Note that the conceptual pre-
sentation in the sequel is backed by scientific literature [12, 13, 24, 18, 26, 27, 32].

3 Smart-Contract Management

As stipulated above, we assume that lifecycle management is essential for secur-
ing smart contracts in that a proper vetting of potential collaborating parties
takes place before enactment. We consider a real-life case from a failed seafood
delivery15 where a business-transaction conflict emerges from an underspecified
conventional contract (CC). An EU company (buyer) orders 12 920 kg of cuttle-
fish from a South-Asian company (seller). In the CC, the liability of the product
quality rests with the seller until the carrier obtains the goods. The underspeci-
fication pertains to the quality of the goods that is not specified in the CC and
the buyer does not check the goods before transferral to the shipping company
(carrier).

The smart-contract alternative resolves the underspecification conflict that
exist in the CC. Thus, in Section 3.1 the presented Qtum-framework goal model
reflects the properties of a smart-contract lifecycle that is fully formalized in
[18, 26, 27, 32]. Next, Section 3.2 gives a small lifecycle example for the seafood-
shipment case.

3.1 Lifecycle-Management Goals

For discussing goals, we use the following approach. The Agent-Oriented Model-
ing (AOM) method [38] is a socio-technical requirements-engineering approach
that takes into account that humans who may belong to organizations use tech-
nology to collaborate for solving problems. In this section, we use the AOM
goal-model type to capture important socio-technical behavioral features for the
Qtum smart-contract system that supports the running case. Goal models en-
hance the communication between technical and non-technical stakeholders to
increase the understanding of the problem domain. Note that AOM goal models
are also instrumental [39] for novel agile software development techniques.

15 http://cisgw3.law.pace.edu/cases/090324s4.html
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Fig. 6. Modeling elements for AOM goal models.

A goal model comprises three main elements depicted as in Figure 6. Func-
tional requirements we refer to as goals and are depicted as parallelograms, roles
we depict as sticky men, and non-functional requirements. The latter has two
variants, namely quality goals for software-related non-functions requirements
depicted as clouds, and human-related emotional goals depicted as ellipses. The
goal model starts with a central root value proposition that is not atomic. Con-
sequently, the value proposition is decomposed in a tree-hierarchy into sub-goals
where each sub-goal represents an aspect for achieving its parent goal [21] and
the lowest sub-goal must be atomic. Goals may have assigned roles, quality- and
emotional goals that are inherited to lower-level goals.

Value Proposition of the Qtum Framework: The root of the goal for the
Qtum-framework we depict in Figure 7 and it is the value proposition of cross-
organizational information- and value-transfer logistics automation. We split the
complex value proposition into goals for smart-contract lifecycle management
[26, 27, 32], i.e., setup, rollout, enactment, rollback, termination. These refined
goals we further explore in Section 3.2.

Fig. 7. Qtum value proposition with lifeycle-management refinement [26, 27, 18].

An essential emotional goal for industry adoption in Figure 7 is trust in the
sociotechnical Qtum-system [34] to reliably perform the intended behavior. In
this case, trust pertains to the dependencies among humans who use technology
to achieve goals. We consider economically viable and easy to adopt as additional
emotional goals that influence widespread industry diffusion. The former means
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that using the Qtum-system results in economic return on investment, while the
latter means the personal barrier of entry for working with Qtum is low.

There are quality goals affiliated with the value proposition that affect all
refining parts of the Qtum-system. These quality goals we derive from a reference
architecture [28] for cross-organizational business-process aware collaboration.
The quality goals below are structured in accordance with [9, 17]. The following
quality goals are not discernible during system execution time.

Modifiable means the Qtum-system changes and adapts during its lifecycle
to the business context. Additionally, it harmonizes cross-organizationally het-
erogeneous system environments comprising regularly updating commercial soft-
ware. Integrable systems consists of separately developed and integrated com-
ponents for which the interface protocols between the components must match.
Hence, integrability between the components of Qtum must be assured.

Next, we specify the quality goals for Qtum that are discernible during run-
time. Interoperable means Qtum must interoperate at runtime with systems
supporting business functions such as planning, logistics, production, external
partner systems, and so on. Dynamic interoperability challenges are business-,
conceptual-, and technical heterogeneity. Secure refers to resisting unauthorized
attempts at usage and denial of service while providing services to trusted users
with good reputation. To address security, trust- and reputation problems, sev-
eral strategies are possible for Qtum. A blockchain-supported authentication
service checks collaborating parties, monitors, inspects and logs network events.
The communication of a system may be encrypted, and so on. Highly automated
collaboration requires systems must cover the entire smart-contract lifecycle.
Hence, Qtum must provide for possibilities of a high degree of meaningful col-
laboration automation that processes tedious and repetitive work while allowing
humans to focus on the remaining creative action. Flexible collaboration is a
highly dynamic process enacting activities by diverse partners exchanging hetero-
geneous data [25]. Hence, Qtum must enable diverse cross-organizational collab-
oration scenarios harmonizing heterogeneous concepts and technologies. Usable
means Qtum must be easy to use for cross-organizational information-logistics
automation and decomposes into three areas. Error avoidance must anticipate
and prevent commonly occurring collaboration errors. Error handling is system
support for a user to recover from errors. Learnability refers to the required
learning time of users to master the Qtum-system.

Finally, there exist quality goals that are architecture specific. Completeness
is the quality of Qtum comprising the set of components for smart-contract life-
cycle management. Scalable refers to the ability of Qtum to combine more than
two collaborating parties into one configuration. Applicable means that Qtum is
instrumental for automating cross-organizational information logistics and value
transfers. Portable means Qtum supports information logistics independent of
the industrial domain and collaboration heterogeneity with respect to business-,
conceptual-, and technological system infrastructure. Note this also includes mo-
bile devices. Performant means the computational and communicational strain
is low for information-logistics automation. Hence, it is important to ensure that
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all phases of a smart-contract lifecycle are carried out within a desirable response
time and without an exponential need for computing power.

3.2 Lifecycle Management Example

The goal model of Section 3.1 we map into Figure 8 for projecting in the running
seafood case. The modeling notation in Figure 8 is the business process model
and notation BPMN [22] and the complete lifecycle is formalized in [26, 27, 18].
The green circle denotes a start of the lifecycle and the red circle the lifecycle
end. The rectangles with plus signs are so-called subprocesses that correspond
to lifecycle stages in Section 3.1. A subprocess is a compound activity that hides
lower-level business-process details.

Fig. 8. Qtum smart-contract lifeycle management.

The starting point of each smart-contract lifecycle in Figure 8 is the business
case of seafood transportation that requires cross-organizational information lo-
gistics automation. Assuming there exists a collaboration hub [29] that serves as
a preparation platform for the inception of smart contracts, a designer creates
a template for a business-network model (BNM) into which service types are
inserted together with roles.

The BNM template enters the population phase. The roles affiliated to re-
spective service types are filled with organizations that collaborate in the smart
contract, i.e., bank2, seller, fridge1, carrier, fridge2, buyer and bank1. Note
that it is possible for several candidate organizations to compete for filling a
specific role. In order to reinforce the desire to fill a role, potential partner or-
ganizations must match a service offer into the service type a role is affiliated
with. A service consumer can evaluate the proposal and decide if a service offer
is acceptable.

When all roles are filled and service-types match with acceptable service
offers, the smart-contract negotiation commences. We assume no party from the
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running seafood-delivery case has a desire to disagree and bring the setup phase
to a sudden end. Instead, the buyer provides a counter offer that introduces
obligations pertaining to the temperature inside containers where the seafood is
stored. We assume the shipment containers are equipped with Internet-of-Things
(IoT) [15] sensors that inform the shipper, seller and buyer in realtime when a
temperature-threshold violation occurs. The counteroffer of the buyer defines in
this case that either a price reduction follows in accordance with the reduced
quality of the seafood. If the temperature change results in the seafood not being
fit for consumption any more, the buyer has the right to reject purchasing the
shipment on arrival.

The counteroffer is accepted by all other parties and a consensus occurs,
which is the prerequisite for a contract establishment. The smart contract is a
coordinating agent from which a distributed governance infrastructure (DGI)
must be deduced. Thus, each party of the running case receives a local contract
copy from which a set of respective obligations are deduced. For example, an obli-
gation for the carrier is that the temperature inside of a seafood-shipping con-
tainer must never be above 20C. The obligations are observed by monitors and
assigned business-network model agents (BNMA) that connect to IoT-sensors.

Next, all collaborating parties can assign their respective private processes
[12] into an emerging (DGI). For example, we assume peer-to-peer payment
by Bitcoins that the buyer first must purchase with Euros. That purchase and
payment via bank1 involves a process that comprises compliance- and report-
ing steps as government impose regulations on the use of crypto-currencies. For
enabling information exchanges between bank1 and bank2 of the seller, the com-
munication endpoints must be established. That way, the management of seller
compliance data is automated.

Assuming a temperature-threshold obligation violation occurs in the domain
of fridge1, an assigned BNMA escalates the event and the buyer checks the
breach severity. If the temperature breach lasts for a period of time resulting
in diminished seafood quality that still allows a successful sale for a lower price
that the buyer tolerates, a response may be the latter requests further cooling
by a different company that slips into the role fridge1. Assuming the seafood is
severely spoiled and can not be sold in the target country, the buyer triggers
a disruptive rollback that collapses the transaction. If the seafood shipment
arrives with the buyer in the agreed upon state and the payment to the seller
via bank2 is complete, then the termination stage dissolves the DGI and releases
all collaborating parties.

We next give the relationships between detailed collaboration elements that
the lifecycle management of Figure 8 coordinates.

4 Value-Transfer Protocol

An integral part of the Qtum-framework is the notion of a value-transfer proto-
col (VTP) that orchestrates cross-organizational information logistics and value
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transfers, in line with the value proposition Figure 7 depicts. Consequently, Sec-
tion 4.1 describes the relationship of process types that form a VTP. Section
4.2 discusses the need for a specific smart-contract language with the utility to
specify VTPs. Finally, Section 4.3 discusses the features of a VTP-supporting
language versus Solidity that Ethereum uses.

4.1 Cross-Organizational Processes

The VTP comprises three different types of collaborating processes. Figure 9
shows a simplified BNM in BPMN notation for the seafood delivery that Section
3 introduces. The BNM assumes that a sequence of subprocesses are placeholders
for service types [12, 13] with labels that indicate the roles of organizations.
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Fig. 9. Qtum BNM.

We assume that the BNM also comprises tasks connecting service-type sub-
processes for establishing choreography control flow. For simplicity, Figure 9
depicts unlabeled choreographing tasks together with an AND-split and -join.
The BNM commences with the seafood seller informing the bank to prepare
for an international currency transaction and next, the seafood is cooled before
a carrier performs shipping to the destination. In the destination country, the
seafood is cooled again while a local bank processes the currency transaction
between both countries. Finally, the buyer receives the seafood for local sales.
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Fig. 10. Externalized service-type process view.

For the carrier subprocess of the BNM, the assumption is that several candi-
date organizations exist for filling the role of seafood carrier. Figure 10 depicts a
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simplified example for a lower-level refinement in the form of a service-type pro-
cess view [12, 13]. The simplified process in Figure 10 assumes a carrier receives
the seafood from the fridge in the source country and charges the bank of the
seller. Next, three parallel branches require that temperature monitoring, prepar-
ing delivery papers and informing the cooling company in the target company
take place simultaneously. Only a candidate organization can become a service-
providing carrier that promises adhering to this simplified process. Note that a
collaboration hub [30] can offer the service-type process views for matching the
latter with corresponding service-offering organizations.
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Fig. 11. Local carrier contract.

As a third VTP-element, Figure 11 shows the local contract the carrier uses
internally. Note that differently to the service-type process view in Figure 10,
the local contract comprises two additional tasks with the labels inform buyer

and charge bank2. Thus, the local contract is a subclass of the service-type
process view with respect to enactment behavior [12, 13], i.e., all tasks of the
process view are experienced externally while the carrier has the option to insert
hidden additional steps in a privacy-assuring way that constitute a competitive
advantage, or are not of interest for external display, and so on.

4.2 Qtum Smart-Contract Language

To support the VTP scenario of Section 4.1, the current smart-contract lingua
franca Solidity does not have the required utility level with respect to contained
concepts and properties. Instead, it is the objective to develop a Qtum smart
contract language (QSCL) and compiler that has comparatively better utility
for VTP management.

High-level QSCL concepts and properties, Figure 12 depicts. The VTP sce-
nario of Section 4.1 resembles the eSourcing framework for which a dedicated
language exists, the eSourcing Markup Language (eSML) [31] that is currently
specified for the semantic-web domain. We intend to map the concepts and prop-
erties of eSML into the blockchain domain for creating QSCL together with a
language compiler for a novel Qtum virtual machine.

Briefly, while we refer the reader to [31] for further details, the properties
in Figure 12 we organize along conceptual interrogatives. One QSCL-instance
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Fig. 12. Properties and concepts of the future Qtum smart contract language [31].

resembles a BNM definition (Figure 9). The Who concept of QSCL comprises
constructs for defining the contracting parties uniquely together with involved
resources and data definitions. The Where concept specifies business-context-
and also legal-context provisions in which a specific smart contract holds. The
What concept allows for defining exchanged values and the service-type process
views (Figure 10) together with lifecycle definitions for such process views and
also for elementary tasks respectively. Thus, in the What part of a QSCL in-
stance, several service-type process views can be defined comparable to Figure
9. Finally, conjoinment constructs are specifically defined exchange channels for
cross-organizational data flow. Monitorability constructs allow for a flexible
definition of dedicated task-monitoring that either uses a polling-, or a messaging
principle.

4.3 Comparative Discussion

Using the smart-contract ontology [31], we examine informally the suitability of
existing Solidity versus QSCL that we construct for the Qtum-framework. As
a general observation, Solidity is a language with a focus on mostly low-level
blockchain-manipulation commands with JavaScript-resembling syntax. Still, it
is possible to import third-party APIs and perform external function calls. So-
called external functions in Solidity are part of a smart-contract interface that
can be called from other contracts and via transactions.

Because of the Turing-completeness of Solidity, it is in principle possible
to define cumbersome supports for all concepts and properties of the smart-
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contract ontology that QSCL embodies. However, concepts such as pattern-based
design, process awareness, matching of processes, etc., are not adopted in any
way in Solidity. With respect to inventing cumbersome workarounds, a recent
conference-paper publication [43] uses Solidity to demonstrate the feasibility of
untrusted business-process monitoring and execution in smart contracts.

One must stress that Solidity has historically not been backed by formal
verification means, differently to the design inception of QSCL [31]. Without such
formally verifiable expressiveness, it is not possible to know ahead of enactment
if a contract is correct and free of security issues. A Solidity-related security
incident16 has triggered only very recently the development and application of
verification tools such as Why17, Solidifier18, or Casper19 that likely leads to a
shift from proof-of-work towards proof-of-stake for Ethereum all together.

5 Conclusions

This whitepaper presents the Qtum-framework for a novel smart-contract block-
chain-technology solution. We show the specific Qtum transaction-processing im-
plementation that uses proof-of-stake validation. Furthermore, Qtum integrates
the Ethereum virtual machine (EVM) together with the Bitcoin unspent transac-
tion output protocol. Note that the Qtum EVM constantly remains backwards
compatible. Additionally, the Qtum-framework recognizes that smart-contract
lifecycle management is important for supporting proper security vetting of col-
laborating parties. To support Qtum lifecycle management, the current lingua
franca Solidity lacks suitability. Consequently, the emerging Qtum-framework
requires a novel smart-contract language with enhanced utility.

The adoption of proof-of-stake into Qtum constitutes a considerable saving
of computational effort over the not scaling Ethereum alternative that still uses
proof-of-work. While Ethereum plans to also adopt proof-of-stake, it is unclear
when such a new version will be released. Also the use of unspent transaction out-
puts is more scalable in comparison to the account management of Ethereum. In
combination with simple payment verification, Qtum already develops a smart-
contract mobile-device solution. While the not scaling Ethereum solution does
not allow for mobile solutions, Qtum aims to achieve a democratized and highly
distributed proof-of-stake transaction validation with its mobile strategy.

The Qtum-framework has a clear understanding of quality criteria that future
developments must satisfy. With respect to functional requirements, Qtum plans
to develop an application layer for smart-contract lifecycle management. Most
importantly, such lifecycle management is important for vetting collaborating
parties to reduce security breaches such as those Ethereum recently experienced,
resulting in multiple hardforks of the latter.

16 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
17 http://why3.lri.fr/
18 https://hack.ether.camp/idea/solidifier—formal-verification-of-solidity-programs
19 http://www.coindesk.com/ethereum-casper-proof-stake-rewrite-rules-blockchain/
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The value-transfer protocol for information logistics in Qtum comprises a
business-network model for choreographing several collaborating organizations.
The latter can provide services with local contracts that must match with the
specified runtime behavior of service-type process views in the business-network
model. With a multi-layered smart-contract management layer, collaborating
parties protect the privacy of their business secrets that pose a competitive
advantage by hiding extension steps in local contracts.

In summary, the Qtum-framework recognizes that smart contracts are so-
ciotechnical artifacts that must also take into account essential quality require-
ments for achieving widespread user adoption. Ongoing real-life industry projects
with Qtum applications result in continuous empirical requirements harvesting.
The mobile strategy in support of highly distributed proof-of-stake transaction
processing aims at a significant advancement in the state of the art. Still, Qtum
also recognizes that smart-contract lifecycle management requires application-
layer development with sophisticated front-end user experience that current so-
lutions do not pay attention to sufficiently.
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